
Inequivalent quantizations of bi-Hamiltonian systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 L113

(http://iopscience.iop.org/0305-4470/26/3/009)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A, Math. Gen. 26 (1993) L113-L117. Rinted in the UK 

LElTER TO THE EDITOR 
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S Department of Mathematical Methods in Physics, University of Warsaw, Hoza 74, 
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AbstnU. It is shown that the quantization of two Hamiltonians generating (with respect 
to two different symplectic structures) the same Hamiltonian vector field, may have 
completely different spectra. 

The purpose of this letter is to point out that the canonical (i.e. geometric) quantization 
of bi-Hamiltonian systems depends on the Hamiltonian structure. More precisely, we 
will show that already for the simplest systems two Hamiltonian formulations of the 
same vector field X may yield (via canonical quantization) comp!etely inequivalent 
quantum systems (we show examples where generators Xo and X, of the quantum 
mechanical time evolution associated to the classical dynamics X have spectra of a 
completely different type). Here X is a vector field which can be written as a 
Hamiltonian vector field with respect to a symplectic structure oo and a symplectic 
structure w I .  If we assume that both symplectic structures are quantizable (in the 
examples we will consider this is trivially true] we can quantize the field X (or its 
Bow) with the wo quantum bundle to obtain X ,  or with the w ,  quantum bundle to 
obtain XI.  In general their spectra will be completely different. Moreover, as is shown 
first, this inequivalence arises already at the level of the semiclassical quantization 
(corrected Bohr-Sommerfeld rules). 

To our knowledge this question has been discussed in the literature only by Dodonov 
et al [I], Morandi et al [2] and Kaup and Olver 131. Dodonov et a1 use path integral 
methods and inequivalent Lagrangians to demonstrate that different quantum systems 
could result without showing this explicitly in terms of spectra. Working in the 
Lagrangian formulation they obtain identical second-order equations on the base 
manifold (=configuration space) from different Lagrangians while the flow on the 
tangent bundle (=velocity phase space) is different. Morandi et a1 [2] also use the 
Lagrangian formalism but they do discuss the spectra obtained from quantizing different 
Lagrangian formulations of the same second-order vector field and show that those 
can be different. Here we shall be concerned with different Hamiltonian formulations 
which yield the same vector field (hence, Bow) on the cotangent bundle (=momentum 
phase space). On the other hand Kaup and Olver conjecture in [3] 'that quantization 
does not depend on the Hamiltonian structure'. Although here we show the contrary 
it should be noted that the particular example discussed in [3] does indeed yield 
equivalent quantizations. 

For the terminology and results concerning geometric quantization we refer the 
reader to [4, 51. 
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We now consider semiclassical quantization of the harmonic oscillator. Let the 
phase space be r = T*W, (q, p )  canonical coordinates, wo = dp A dq, Ho = ;( p z +  q2) and 
let X defined via 

I (  X)wo = -d Ho (1) 

M.c:={(q,p)E T*RIHo(q,p)=E} (2) 

denote the dynamical vector field for the hamonic oscillator. The level sets 

d e b e  for E > 0 a regular Lagrangian foliation of T\lp = q = O} by concentric circles 
and we have 

TxW\~p=q=o}=Iw*\{o}=s'xIw+ (3) 

(eP)f*(p'-tan-'(p/q), Ho(q,p)). (4) 

wo = dHo n d p  ( 5 )  

and (Ho, p) are action angle variables for the system (X, wo). We can then obtain the 
eigenvalues of Ho from the integrality condition ('semiclassical' quantization which is 
exact in this case) [4] on the leaves which states that if 

with the pointwise identiEcation 

Moreover, 

&(q, p )  = Eo := A(no + t )  no€ Z (6) 
has solutions, i.e. 

Hi1(&) # 0 (7) 
then Eo is an eigenvalue of the quantum operator go associated with the classical 
observable Ho. Obviously, in our case H;'(Eo)= M G # O  for n o 2 0  in (6 )  and we 
have the well known spectrum for the harmonic oscillator. Note that in (6) we have 
already included the Maslov correction h/2 which is non-trivial in the case at hand. 

Now let f :  W .+ W be a function such that f(x) > 0 Vx 3 0 and let F ( x )  := jif (i.e. 
dF/dx =f and F(0)  = 0). Then 

0 1  "f.Ho(q, P) dP dq ( 8 )  

Hi(q,P)'FoHo(q,P) (9) 

~ ( X ) w 1  = -dH, (10) 

w1 = dH, n d p  (11) 

is a symplectic form on r and 

is a Hamiltonian for X, i.e. 

moreover 

and thus (HI, a )  are action angle variables for the system (X,  ut). As before we have 
that if 

H,(q, p )  = E ,  := A( n ,  + 4) n , e Z  (12) 
has solutions then E, is an eigenvalue of the quantum operator 3, associated with 
HI. In (12) we have assumed that the Maslov correction is the same for our wo and 
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o1 [6]. At first glance (12) seems to indicate that both Hamiltonian formulations give 
the same spectrum for their Hamiltonian functions g5nerating the same classical 
dynamics X. However, given an eigenvalue h ( n + i )  of Ho it may be that 

(13) HF1( f i ( n  +!)) = 0 

and thus h(n+i)g  spec(fiJ. As an example we might take 

Then it is easy to see that 

H;'(fi(n+f)) =0 V n s Z  (15) 

and thus spec($) being empty is completely different from spec(fi0). Choosing a 
different HI appropriately, we may, for example, obtain spectra consisting of a non-zero 
but finite number of points. Of course, there is a simple relation between the volume 
given by o1 and the function F 

Hence, a bounded F (as in (14)) always implies a finite volume, which in tnm implies 
a finite-dimensional quantum Hilbert space. Conversely, if one chooses F such that 
it is not bounded from above then (since we always assume F(0) = 0, F ' r  0) the 
semiclassical quantization yields identical spectra for the quantum Hamiltonians. 

Next we consider geometric quantization. As before we consider r = T"R, oo = dp A 

dq but now with (so far) arbitrary Ho and X given as in (1). We choose the vertical 
polarization 

P:= span, {d/dp} 

and the potential 

& = P  dq (17) 

adapted (i.e. B o I p = O )  to the given polarization. The quantum bundle here is trivial 
and the Hilbert space %$ is given by 

Only functions which leave the polarization invariant can be quantized and those are 
of the form 

Wq,p)=dq)p+b(q ) .  (1% 

The vector field X is then quantized by the oo-quantization to the operator [4,5] 

J ih Ja, k0= -ihao,(q) -+ bo(q) -- - (4). 
Jq 2 J4 
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Let a1 and H I  be defined as in (8) and (9). Then the quantum bundle arising from a, 
is trivial as well and 

81 + G(q, P )  dq (22) 

where 

is a potential adapted to the polarization. Hence 

XI = xo=: ,Ye 

i.e. the Hilbert spaces are identical. Although it can easily be done it is not of interest 
here to determine the a,-quantizable functions. For our purpose it is sufficient to note 
that H1 = F*Ho is a, quantizable since H I  generates (with a,) X and this vector field 
leaves the polarization P invariant (as a consequ:nce of the choice of Ho in (20)). 
Before we write down the a,-quantized operator X, corresponding to X we note that 

A(% P )  := Hi(q ,  P I -  W )  

does not depend on p and thus 

A(q,P)=A(q, 0) =F0bo(q) .  

Consequently, we obtain for the a1 quantization of X 

a itr Jao 
aq 2 J q  

2, = -ihao(q) -+ Fobo(q) -- - (4). 

Suppose we have Ho= b (q ) ,  then 

and X is quantized in both the a. and wI quantization as multiplication operator 

Z0 = bo(q) = Ho (29) 

(30) 2, = Fo bo(q) = H , .  

If $I E 2 is to be an eigenvector of go with eigenvalue A', then Vq E OB 

(Ao-bdq))$(q)=O. (31) 

Hence, we must have 

A'E bo(R) 

and this is also su5cient for A' to be an eigenvalue. $I will be an appropriately defined 
distribution. A similarAstatement holds for H I  = FQ Ho.  Consequently, if A E  Ho(R) but 
A $  H I @ )  thenspec(Xo) Z ~ p e c ( 2 ~ ) .  For example, we may choose Ho(q,pk= q which 
implies spec(Xo) =W and choosing F ( x )  = I/(exp(-x)+ 1) we have spec(Xl) =[O, 11. 
This proves the asserted inequivalence. 
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The information contained in the Bohr-Sommerfeld rules has to be interpreted as 
follows. They are conditions on the leaves of the Lagrangian foliation which select 
those leaves on which the generalized wavefunctions have their support. If no leaves 
which satisfy the rules exist the Hilbert space obtained from this foliation consists 
only of the zero vector [4]. Those leaves on which the rules can be satisfied provide 
support for a non-trivial Hilbert space of generalized functions. The spectrum of the 
operators corresponding to the action variables is then given by those (constant) values 
which the action variables take on the leaves satisfying the rules. For completely 
integrable systems for which the integrals define a Lagrangian foliation of almost all 
phase space and where all leaves are equivalent to tori the Bohr-Sommerfeld rules 
give the exact spectra forthe action variables. In this sense the semiclassical quantization 
of the harmonic oscillator discussed above is exact and provides a prototypical example. 

In the previous examples we have chosen second symplectic structures and 
Hamiltonians such that the images of the phase space r under Ho and H1 differ. In 
the ‘semiclassical’ treatment one may have that for H1 no leaves exist which satisfy 
the Bohr-Sommerfeld rules in which case the two quantizations cannot be equivalent. 
On the other hand if for each leaf which maps to h ( n + $ )  under Ho a (possibly) 
different leaf exists which maps to the same value under H ,  then the two semiclassical 
quantizations are equivalent. 

A similar statement holds for the full geometric quantization. Any functions Ho 
and Hl which generate via wo and w, a vector field X which lies in the polarization 
is quantized as multiplication operator (in the representation chosen by the polariz- 
ation). Thus, the images of the phase space under the functions Ho and H1 determine 
the spectra of ;k?, and gl. So the two quantizations are inequivalent whenever those 
images differ. On the other hand the two quantizations yield the same spectra whenever 
those images are identical (as is the case in the example discussed by Kaup and Olver 

These statements also apply to n-dimensional separable systems where one can 
apply the above analysis on each pair of action-angle variables. 

Here we have analysed equivalence in the weakest possible sense, i.e. we have only 
compared spectra. On physical grounds an equivalence between quantizations would 
require more than that, e.g. a unitary map intertwining the two quantizations. 

PD. 
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